Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Front Cardiovasc Med ; 9: 1054690, 2022.
Article in English | MEDLINE | ID: covidwho-2227642

ABSTRACT

As 2023 approaches, the COVID-19 pandemic has killed millions. While vaccines have been a crucial intervention, only a few effective medications exist for prevention and treatment of COVID-19 in breakthrough cases or in unvaccinated or immunocompromised patients. SARS-CoV-2 displays early and unusual features of micro-thrombosis and immune dysregulation that target endothelial beds of the lungs, skin, and other organs. Notably, anticoagulation improves outcomes in some COVID-19 patients. The protein transforming growth factor-beta (TGF-ß1) has constitutive roles in maintaining a healthy microvasculature through its roles in regulating inflammation, clotting, and wound healing. However, after infection (including viral infection) TGF-ß1 activation may augment coagulation, cause immune dysregulation, and direct a path toward tissue fibrosis. Dysregulation of TGF-ß signaling in immune cells and its localization in areas of microvascular injury are now well-described in COVID-19, and such events may contribute to the acute respiratory distress syndrome and skin micro-thrombosis outcomes frequently seen in severe COVID-19. The high concentration of TGF-ß in platelets and in other cells within microvascular thrombi, its ability to activate the clotting cascade and dysregulate immune pathways, and its pro-fibrotic properties all contribute to a unique milieu in the COVID-19 microvasculature. This unique environment allows for propagation of microvascular clotting and immune dysregulation. In this review we summarize the physiological functions of TGF-ß and detail the evidence for its effects on the microvasculature in COVID-19. In addition, we explore the potential role of existing TGF-ß inhibitors for the prevention and treatment of COVID-19 associated microvascular thrombosis and immune dysregulation.

2.
Biologicals ; 80: 27-34, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2031158

ABSTRACT

The present study aimed to scrutinize the expression profile of inflammatory-related genes (IFI-16, NOTCH2, CXCL8, and THBS1) from acute to post-acute stage of this infectious epidemic. The current cross-sectional study consisted of 53 acute-phase COVID-19 patients and 53 healthy individuals between February and March 2021. The extraction of total RNA was performed from PBMC specimens and also expression level of selected genes (IFI-16, NOTCH2, CXCL8, and THBS1) was evaluated by real-time PCR. Subsequently, levels of these factors were re-measured six weeks after the acute phase to determine if the levels of chosen genes returned to normal after the acute phase of COVID-19. Receiver operating characteristic (ROC) curve was plotted to test potential of genes as a diagnostic biomarker. The expression levels of inflammatory-related genes were significantly different between healthy and COVID-19 subjects. Besides, a significant higher CXCL8 level was found in the acute-phase COVID-19 compared to post-acute-phase infection which may be able to be considered as a potential biomarker for distinguishing between the acute phases from the post-acute-phase status. Deregulation of the inflammatory-related genes in COVID-19 patients, especially CXCL-8, can be serving as potent biomarkers to manage the COVID-19 infection.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Cross-Sectional Studies , Leukocytes, Mononuclear , Inflammation/genetics , Biomarkers , Receptor, Notch2
SELECTION OF CITATIONS
SEARCH DETAIL